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1. The background for this paper is the following. Last year, literature
on approximation in normed linear spaces X, pointed out the important role
of the extremal points of the unit-cell of X*, the continuous dual of X. One
of the best known examples for this is the "generalized Kolmogorov­
criterion" which gives necessary and sufficient conditions for elements of
best approximation by linear subspaces (e.g., [7, Theorem I. I3, p. 62]).
For applications in concrete spaces, e.g., function spaces, it is therefore
necessary and important to know the special form of the extremal func­
tionals of the unit-cell SX* in the dual.

In earlier works the extremal points of Sc(o.x)' (where Q's compact,
X a Banach space) were characterized (see e.g., [7, Lemma 1.7, p. 197]) as
the "generalized evaluation functionals" f ---->- L(f(xo)) with L E ext(Sx'),
X o E Q. In the special case X = ~ these are just (plus and minus) the point
evaluations (see, e.g., [4, Lemma 6, p. 441]). Recently, this result was
generalized to the space Co(T, X) (T locally compact, X a normed linear
space) [I].

In both cases the proof of

(A) "every f -> L(f(xo» is an extremal point of the unit-cell
Sc(o,x)' (or SCo(T,X)') in the dual"

requires a great deal of work. Singer makes use of an integral representation
of the functionals in the dual and his proof of (A) is only valid for Q compact.
The proof in [1] avoids such integral representations but is not much easier
and shorter either.

Tn this paper we shall give a more general characterization for functionals
in SCo(T,X)* which are extremal among those which vanish on certain sub­
spaces of Cu(T, X) (Theorem 2). As an immediate corollary (Cor. 3) we
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get (A). The proof is based on the theorem of Buck [2, Theorem 4] and
Phelps [6, pp. 291, 294].

Let X be a (real or complex) normed linear space, M C X a linear subspace
and L ESx * n M.L and H L := {x E X: II x II ~ Re L(x) ~ I}.

THEOREM 1. The following assertions are equivalent:

(a) L E ext(Sx* n M.L), i.e., L is an extremal functional vanishing on M;

(b) HL - HL + M = X;

(c) (Ilk) H L - (11k) H L + M = X for every kEN.

2. Notations. Let X be a (real or complex) normed linear space, let
x* be its continuous dual and let Sx* be the unit-cell in X* where X* has
the usual operator-norm. If M is a convex subset of some locally convex
Hausdorff-space then ext(M) denotes the set of all extremal points of M,
i.e., all the points which belong to no open segment in M.

Let T be a locally compact Hausdorff-space, X a (real or complex) normed
linear space and let Z := Co(T, X) be the space of all continuous functions
j: T ->- X with the property that for each E > 0, the set {x E T: Ilf(x)11 ~ E}
is compact, i.e., f is "vanishing at infinity." Co(T, X) is normed as usual by

Ilfll "'" SUPxeT Ilf(x)ll.
Let Me X be a linear subspace, M.L its annihilator in x* and let

o #- To C T be an arbitrary subset of T. Let 9Jl(To , M) C Z be the linear
subspace of Z defined by Wl(To , M):= Wl :== {fE Z:f(To) eM}. If you
define C(T) as the linear space spanned by CoCT) and the constant functions
on T we even have: 9Jl(To , M) is a Cc(T)-module.

Remark. All the norms in Co(T, X), X, x* etc. are denoted by II '11 and
this should not cause any confusion. All other notations are standard.

3. Now we state the theorem.

THEOREM 2. Let L E ext(Sx* n M.L) and Xo E To. Define:

(*)

the "generalized evaluation functional." Then we have:

q> E ext(Sz* n 9Jl(T() , MF)

Proof By Theorem 1 it is sufficient to show that
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Suppose j E Z, X o E T, and L as above. For brevity, set 9Jl = 9Jl( To , M).
Our aim is to representjasf= z; +- g -- h with v E 9Jl, g, h E H<p . Intuitively
we shall make g almost equal to I except on a small neighborhood U of X o
where g is I plus some "peak" h - z;, the latter being zero outside of U.
As main tools we need Urysohn's lemma (e.g., [5, p. 216 f.]) and the theorem
of Buck-Phelps mentioned above. First we show the following.

Remark. In the context of Theorem 1 we have that for every L E Sx*
with II L !I = 1, the set H L is unbounded.

Proof Given n E N, choose x E X, Ii x II = 1, such that Re L(x) =

I L(x) I > ! - l/n. Thus II x II - Re L(x) < l/n and thus n . x E H L • Since
II nx II = n, H L contains points of arbitrarily large norm. (Trivially the same
is true for every (1/k) H L (k EN).)

For the proof of Theorem 2 we shall proceed in two steps.

(1) Since L E ext(Sx* n M.l) there exists a representation for y :~ f (xo):
y = m +- ao - bo with mE M, ao , boE 0/4) H L . Since H L is unbounded
there exists aCE 0/4) H L such that II CII ~ II ao II + IIIII. Set: a := ao + c,
b := bo + c. Since HL is convex a/2, b/2 are in 0/4) H L and thus
a, b E 0/2) H L • Further: y = a - b + m and II a II ?': IIII!.

(2) Let U be an open neighborhood of X o such that for all x E U:
lif(x) - f(xo)11 < 1/2. Since {xo} is compact and nU is closed there exists
a real-valued continuous function n E C(T, [0, 1]) with

\ 1 when x = Xo
n(x) = 1.0 ff Uo .

Now set:

vex) = n(x) . m

g(x) = f(x) + n(x) . (b - m)

hex) = n(x) . b

Clearly: j = v + g - h. We have the following.

(a) vex) E M for all x E T, i.e., especially for all x E To , i.e., v E 9Jl.

(b) Obviously II h II = II b II and <P(h) = L(h(xo» = L(b). Thus,
II h II - Re <P(h) = [I b II - Re L(b) :'( 1/2 < 1, i.e., hE H<p.
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(c) Evaluate II gil·

x E T\U: II g(x)11 = Ilf(x)11 ~ Ilfll ~ II a II,
x E V: Using the equality: f(xo) = a - b + m we have:

II g(x)11 = Ilf(x) - f(xo) + f(xo) + n(x) . (b - m - a) + n(x) . a II,

~ Ilf(x) - f(xo)11 + 110 - n(x)) . f(xo) + n(x) . a II,
~ 0/2) + 0 - n(x)) II f(xo)11 + n(x) II a II,

~ 0/2) + II a Ii·

So we have: II g II ~ 1/2 + II a II. Since g(xo) = f(xo) + b - m = a we
we have: W(g) = L(a), thus

II g II - Re W(g) ~ (1/2) + II a II - Re L(a) ~ 0/2) + 0/2) = 1;

i.e., gE H<1>'

This completes the proof of Theorem 2.

COROLLARY 3. Let if; E Sz·· Then we have if; E ext(Sz.) -¢>- if; = W"'o.L as
defined in (*) (Theorem 2) for some X o E T, L E ext(Sx.).

Proof "-¢co" (This is the new proof for (A)). Set To := T, M:= {O} C X.
Then we have: M.l = x* and W1(T, M) = {O}, so the assertion follows
immediately with Theorem 2.

"=>" For this direction compare [1, first part of Lemma 3.3].

Remark. It would be interesting to find a similar proof for the converse
result in Theorem 2.
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